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Problems Studied

The main thrust of this project was to develop a

thermodynamically admissible theory of phase transitions.

hopefully appropriate for the study of crystal growth. Secondary

projects included the development of models for

thermoviscoelasticity and thermoviscoplasticity.
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Summary of Results

Solidification

The classical theory of Stefan, for the melting of a

solid or the freezing of a liquid, is far too simplistic to

account for the myriad of phenomena which occur during

solidification (an example being dendritic growth, in which

simple shapes evolve to complicated tree-like structures).

Motivated by work of Mullins and Sekerka [Rl.R2]. a continuum

theory of melting and solidification - of sufficient

generality to model phenomena of this type - was developed

bi [Q4.Q12] (see also the review [QS]). The theory starts from

general (nonequilibrium) thermodynamical laws which are

appropriate to a continuum and which include contributions of

energy and entropy for the interface between phases. Among

the results is an interface condition (generalizing the

uclassical Gibbs-Thompson equation) which relates the

temperature at the interface to: the jumps in energy and

* entropy across the interface, the interfacial values of energy

V and entropy, the interfacial curvature. This result is

independent of particular constitutive equations and shows

that whenever the interface is endowed with energy and

entropy, the temperature must necessarily be a function of

curvature.

1Chalmers [R3], Delves [R4], and Doherty [R5] discuss these

phenomena.
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Constitutive equations for the interface, of sufficient

generality to describe crystal growth involving an anisotropic

material structure, are introduced; and corresponding

restrictions, necessary and sufficient for compatibility with

thermodynamics, are found [Q12].

Using these restrictions appropriate free-boundary

conditions for the interface are developed, and various

physically-realistic free-boundary problems are described.

These generalize the classical Stefan problem, the

Mullins-Sekerka problem [RlR2] resulting when interfacial

energy and entropy are small. It is shown that (within the

Mullins-Sekerka theory) the volume V(t) and surface area

A(t), of a body of arbttrary shape solidifying in a melt of

uniform far-field temperature, satisfy:

d
d- [A(t) + cV(t)] 0,

with c a constant which is negative when the far-field is

supercooled, but otherwise positive.

* We also study the corresponding equilibrium theory and

show [Q4] that in certain situations there are no global

energy minimizers, but there are minimizing sequences, and

these seem consistent with instabilities such as the formation

of complicated arrays of thin spikes, behavior which may be

indicitive of dendrtttc growth.

We believe the theory developed in [Q4] will have many
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applications. For example, morphological instabilities such as

dendritic growth, along with the microsegregation of solutes

or impurities that usually accompany them, determine the

microstructure and defect structure of the growing phase.

Since this structure has a strong influence on material

properties, such instabilities play an important role in

materials science. Examples are most prevalent in the casting

of metal alloys and in the growth of semiconductor crystals

from the melt, but are also associated with laser, magnetic,

piezoelectric and other crystals. Moreover, this is not the

only field of science in which these ideas may be important:

for example, in the study of precipitated snow the conversion

of dendrites of snow into sets of isolated arms, due to a rise

in temperature, is believed to be a cause of some snow

avalanches (cf. the discussion by Doherty [R5]).

Theories of phase equilibria

The classical theory of phase transitions in fluids

consists in minimizing the total energy over all density

fields with given total mass. The chief difficulty with this

approach is the existence of an infinity of solutions

involving an arbitrary number of transitions between constant

states.

To remedy this difficulty we have developed [Ql.Q9] a

theory in which transitions between phases are accompanied by

R I
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an increase in energy proportional to interfacial area (i.e.

to the area of the surface separating the two phases). The

theory also includes contact energy between each of the phases

and the confining vessel. Within this framework a two-phase

fluid of total mass m confined to a container 0 will have

stable density distributions u = u(x) characterized by the

variational problem

VP: mtntmtze aA(u) + I a Ai(u) + I f Wi(u)

subject to = m.

Here W(u) represents the free energy of phase i (i=1,2).

A(u) is the area of the interface between phases. Ai(u) is

the contact area between phase i and the container, and

7a.oi 0 are surface energies, per unit area.

Problem VP without contact energy (ai = 0) is discussed

in [Ql], where existence is established for global minimizers

and, to obtain a better understanding of such minimizers. VP

is solved explicitly for a square container. The theory with

0 is more interesting: for 'al-o 2 1 a. the underlying

variational problem has a solution, but not generally when

1l,21 a [Q9]. This lack of e:istence has a definite

physical meaning in terms of the limit approached by

minimizing sequences. For a2 > a I + a (say), this limit

0111 111 '
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corresponds to coating the walls of the container with a

"thin" layer of phase 1.

A second method of including interfacial energy is the

Cahn-Hilliard theory in which the stable density distributions

are characterized by the variational problem

P(a): minimize f( W(u) + lvul )  subject to ju = M.

Here W(u) is a nonconvex function which represents the

course-grain free-energy of the fluid, while the term

involving IvuI 2  is a measure of interfacial energy. With

Matano (U. Hiroshima) the following results were obtained for

Problem P(c) [QIO]:

i) local minimizers belong to L'(f);

(ii) for certain nice regions local minimizers exhibit

relatively simple behavior; for example, in a cylinder

of arbitrary cross section local minimizers are

monotone in the axial direction;

(iii) for sufficiently thin or sufficiently long regions,

stationary solutions are independent of the coordinates

describing the "small dimensions".

Results concerning these problems have application, not

only to liquid-liquid and liquid-vapor transitions, but also

to special cases of solid-solid transitions. Further. P(u)

characterizes stable equilibria within the dynamical theory of
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Cahn [R6] (the Cahn-Hilliard theory), so that results

concerning P(a) have possible application to phase

separation in binary alloys.

A review article [Q5] was written on phase equilibiria;

this article contained several conjectures which might be of

interest to workers in the calculus of variations. One of the

conjectures - that as a -+ 0. global minimizers of P(a)

approach the corresponding bi-constant solution of P(O) with

corresponding interface a surface of minimal area at fixed

phase volume - was recently proved by Modica [R7] and

* Sternberg [RS].

Continuum mechanics

The classical theory of fluids does not have sufficient

structure to model phenomena such as capillarity, and for that

reason Korteweg (cf. Truesdell and Noll [R9]. Sect. 124)

generalized the underlying constitutive equations by allowing

the stored energy to depend not only on the density but also

on the density gradient. In [Q2,Q6] the principle of virtual

* work is used to develop a consistent set of field equations

and boundary conditions for Korteweg fluids. 2 This theory

allows for a superficial energy on the interface between the

fluid and the surrounding media; the corresponding boundary

condition indicates a strong interaction between this

superficial energy and the gradient dependence of the bulk

2 Cf. Dunn and Serrin [RIO]. who take a more general approach.

Sr
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energy.

A study was completed [Q3] discussing questions of

material symmetry for models of this type.

Viscoplasticity

In collaboration with Browning (Los Alamos National

3Laboratory) and Williams (Carnegie Mellon) [Rll] we have

developed a simplified constitutive theory for the

one-dimensional response of certain filled polymers (such as

those used in solid propellants and high explosives).4 This

constitutive equation isolates the rate-dependent portion of

the stress response in the form of a convolution of a single

stress-relaxation function with an elastic-plastic

stress-strain law. A review article [Q7] concerning this

model was written.

Applications to temperature-varying environments are

extremely important, and consequently work was begun [Qll] on

extending the theory in that direction. This study, still in

its preliminary stages, is based on experiments performed at

Los Alamos.

Nonlinear viscoelasticity

Because of the difficulties inherent in general nonlinear

3 Partially supported under a precursor of this grant.

4This model is now being used for the solution of actual
problems by the Los Alamos National Laboratory, and Lawrence
Livermore Laboratory has developed (and coded) a three
dimensional theory [R12] based on our model.

I0az



viscuelasticity, models have been proposed which capture the

essential interaction between dissipation and nonlinearity,

but are sufficiently simple to allow for the characterization

of real materials and for the analysis of corresponding

initial/boundary-value problems. Most such models are based

onconstitutive equations in single-integral form:

U o(t) = f(C(t)) + f F(s.6(t).6(t-s))ds. (I)

.0

Here a is the stress and e the strain, while f and F are

S material functions. An energy corresponding to (I) is a

single-integral law between strain e and free energy

such that a oe* in any constitutive process. In

collaboration [Q13] with W. Hrusa (Carnegie Mellon) we

establish the existence of an energy for (I). We show that

this energy is unique and give simple formulas for its

construction. Such energies are important as they provide a

Lyapunov function for corresponding initial/boundary-value

-problems. The results should have application to the dynamic

5 analysis of polymeric materials.
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